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A GLOBALLY CONVERGENT AUGMENTED LAGRANGIAN PATTERN SEARCH

ALGORITHM FOR OPTIMIZATION WITH GENERAL CONSTRAINTS AND SIMPLE

BOUNDS

ROBERT MICHAEL LEWIS * AND VIRGINIA TORCZON ?

Abstract. We give a pattern search adaptation of an augmented Lagrangian method due to Conn,

Gould, and Toint. The algorithm proceeds by successive bound constrained minimization of an augmented

Lagrangian. In the pattern search adaptation we solve this subproblcm approximately using a bound con-

strained pattern search method. The stopping criterion proposed by Corm, Gould, and Toint for the solution

of this subproblem requires explicit knowledge of derivativcs. Such information is presumed absent in pat-

tern search methods; however, we show how we can replace this with a stopping criterion based on the

pattern size in a way that preserves the convergence properties of the original algorithm. In this way wc

proceed by successive, inexact, bound constrained minimization without knowing exactly how inexact the

minimization is. So far as we know, this is the first provably convergent direct search method for general

nonlinear programming.

Key words, augmented Lagrangian, constrained optimization, direct search, nonlinear programming,

pattern search

Subject classification. Applied and Numerical Mathematics

1. Introduction. In this paper wc consider the extension of pattern search methods to nonlinearly

constrained minimization. We will consider problems of the form

minimize f ( x )

(1.1) subject to c( x ) = 0

£<x<u,

where / : /R n _ /R and c(x) = (cl(x),... ,c_(x)). We allow the possibility that some of the variables are

unbounded either above or below by permitting gj,uj = +c¢, j E {1,.--,n}. This formulation assumes

that any general inequality constraints have been converted into equality constraints by the introduction of

non-negative slack variables, leaving bounds as the only explicit inequality constraints.

The pattern search method that we will discuss here is an adaptation of an augmented Lagrangian

method due to Conn, Gould, and Toint [6]. The latter method is the basis for the subroutine AUGLG in

the LANCELOT optimization package [7]. The method of Conn, Gould, and Toint involves successive bound

constrained minimization of an augmented Lagrangian. Since pattern search methods have recently been

extended to bound constrained minimization [19, 21], an adaptation of the augmented Lagrangian method
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of Conn, Gould, and Toint to pattern search naturally suggests itself. Fhrthermore, the multiplier update

of Algorithm 1 in [6] does not involve information about derivatives of the objective or constraints, so the

augmented Lagrangian approach is consistent with the derivative-free nature of pattern search algorithms.

Since there exist broad classes of pattern search methods for unconstrained [20, 34, 35, 36] and bound

constrained minimization [19, 21], it seems to us natural to first extend pattern search methods to nonlinearly

constrained minimization via algorithms that proceed by successive unconstrained or bound constrained

minimization, such as the augmented Lagrangian method we discuss here. In the absence of information

about derivatives of the objective and constraints, it is difficult to design pattern search algorithms for

general nonlinearly constrained minimization that produce only feasible directions or feasible iterates. This

is due to the fact that a pattern in a pattern search algorithm would need to include a sufficiently rich set

of search directions to capture any feasible improvement in the objective. When nonlinear constraints are

present, it is not clear how to design such a pattern without first-order information.

We will show that despite the absence of an explicit estimation of any derivatives (a characteristic of

pattern search methods), our pattern search augmcntcd Lagrangian approach exhibits all of the first-order

convergence properties of the original algorithm of Corm, Gould, and Toint. This at first is surprising, since

the original algorithm allows its subproblems to be solved approximately, and the stopping criterion for the

solution of the subproblcms is based on the magnitude of a measure of first-order stationarity for bound

constrained minimization. This information is not explicitly available in a direct search method. However, as

we discuss in §5.1, there is a correlation between the size of the pattern in bound constrained pattern search

and the amount of local feasible descent. Using this correlation we are able to establish convergcnce even

without explicit knowledge of derivatives. That is, we are able to proceed by successive, inexact minimization

of the augmented Lagrangian via pattern search methods, even without knowing exactly how inexact the

minimization is.

This is the main contribution of the work presented here, and shows how one can use pattern search in

a practical algorithm for nonlinear programming. Otherwise, the extension of pattern search to constrained

minimization by means of the augmented Lagrangian approach of Corm, Gould, and Toint is straightforward,

due to the strength and generality of the convergence analysis presented in [6].

The question of treating general nonlinear constraints with direct search minimization algorithms has

a long history, beginning with the original work on direct search methods. Rosenbrock, in [28], proposed

treating constraints using his rotating directions method by redefining the objective near the boundary of

the feasible region in a way that would tend to keep the iterates feasible, a form of penalization. Similar ideas

for modifying the objective in the case of bound constraints are discussed by Spendley, Hext, and Himsworth

[30] and Nelder and Mead [24] in connection with their simplex-based methods. In these approaches the

objective is given a suitably large value (in the case of minimization) at all infeasible points.

More systematic approaches to penalization have also appeared. The treatment of inequality constraints

via exact, non-smooth penalization (though not by that name) appears as early as the work of Hooke and

Jeeves [15]. More recently, Kearsley and Glowinski [13, 16] have applied pattern search methods to equality

constrained problems arising in control via exact, non-smooth penalization. Weisman's MINIMAL algorithm

[14] applies the pattern search algorithm of Hookc and Jeeves to a non-smooth quadratic penalty function and

incorporates an element of random search. Davies and Swann [8], in connection with applying the pattern

search method of Hooke and Jeeves to constrained optimization, recommend the use of the reciprocal barrier

method of Carroll [5, 11].

A direct search method for constrained minimization that has proven very popular in application is
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M. J. Box'sComplexmethod[3],whichwasoriginallydevelopedto addressdifficultiesencounteredwith
Rosenbrock'smethod.In this algorithm,theobjectiveis sampledat a broadersetof pointsthanin the
simplex-basedmethodsasawayto avoidprematuretermination.Thereisalsoanelementofrandomsearch
involved.TheACSIMalgorithmofDixon[10]isasophisticateddirectsearchalgorithm,combiningideasfrom
theNelder-MeadsimplexmethodandtheComplexmethodwithelementsof hem-stitchingandquadratic
modelingto accelerateconvergence.

In thespecialcaseof boundconstraints,Spendleyalsosuggestedtheexpedientof simplysettingto the
correspondingboundanyvariablethatwastendingto goinfeasible[29].In [17],Keeferproposedahybrid,
feasibleiteratesalgorithmfor boundconstrainedminimizationthat usesthealgorithmof Nelder-Meadin
theinteriorofthefeasibleregionandthemethodofHookeandJeevesat theboundary,sincethepatternin
thealgorithmofHookeandJeevesconformsin anaturalwayto theboundaryofthefeasibleregion.In the
caseoflinearconstraintsthereisthealgorithmof May[22],whichisanextensionof Mifflin'sderivative-free
unconstrainedminimizationmethodin [23].Thisalgorithmalsotakesintoaccounttheparticulargeometry
of thefeasibleregion.

Othershaveproposedmodificationsof the methodof HookeandJeevesalongthe linesof fcasiblc
directionsalgorithms.Thesemethodsinvolvea limitedcalculationof sensitivityinformationto compute
feasibledirectionsat theboundaryof thefeasibleregionif thealgorithmappearsto havestalled.Klingman
andHimmelblau[18]giveanalgorithmwith a simpleconstructionof a suitablefeasibledirection.Thc
methodof GlassandCooper[12]ismoresophisticated,andcomputesa newsearchdirectionbysolvinga
linearprogrammingprobleminvolvinga linearapproximationof theobjectiveandconstraints,just asone
wouldin aderivative-basedfeasibledirectionsalgorithm.

Finally,wenotetheflexibletolerancemethodofPavianiandHimmelblau[14,25].Thisalgorithm,based
onthemethodofNelderandMead,alternativelyattemptsto reducetheobjectiveandconstraintviolation,
dependingontheextentto whichtheiteratesareinfcasible.

Theseproposalsfordirectsearchalgorithmsforconstrainedminimization,whiletheyhaveoftenproven
effective,havenotbeenaccompaniedbyanyconvergenceanalysis.A notableexceptionisMay'salgorithm
forlinearlyconstrainedminimization[22];hissufficientdecreasecriterionforacceptingstepsenableshimto
proveglobalconvergence.Morerecently,provablyconvergent,feasibleiteratepatternsearchalgorithmsfor
boundconstrainedandlinearlyconstrainedminimizationweredevelopedin [19,21];weapplytheanalysis
forboundconstrainedpatternsearchmethodsin thepresentwork.

2. The augmentedLagrangianmethodof Conn, Gould,andToint. Webeginbyreviewingthe
augmentedLagrangianapproachin [6]. Tofacilitatecomparisonof thepatternsearchapproachwith the
originalalgorithm,wewill adhereto thenotationof [6]throughout.

TheaugmentedLagrangianis

(2.1) o(x; s,,) = + +
i=1 i=l

The vector A = ()_1," • •, Am) T is the Lagrange multiplier estimate, # is the penalty parameter, and the entries

si_ of the diagonal matrix S are positive weights. The equality constraints of (1.1) are incorporated in the

augmented Lagrangian ¢ while the simple bounds are left explicit. For a particular choice of multiplier A(k) ,

penalty parameter/z (k) , and scaling S (k) , we define

¢(k) (x) = ¢(x; _(k), S(k), p(k)).



Given an iterate x (k), we define

Vx¢(k) = V_(x(k) ; A(k), S(k), p(k)).

Corm, Gould, and Toint define the first-order Lagrange multiplier update to be

(2.2) _(x, )_, S, #) = _ + Sc(x)/#.

This is a form of the Hestenes-Powell multiplier update for the augmented Lagrangian (2.1). For the purposes

of a pattern search augmented Lagrangian approach, which assumes no explicit knowledge of derivative

information, one appears to have no choice other than some variant of the Hestenes-Powell multiplier update.

All other multiplier update formulae (such as those discussed in [1, 32]) require information about derivatives.

The projection onto the convex set B = { x I _ < x _< u } will be denoted by P; it is defined

component-wise by

Given x E B and a vector v, we define

{ gi ifxi_<gi
(P[x]),= u_ ifx, > u,

xi otherwise.

P(x, v) = x - P[x - v].

Unless otherwise noted, we use I]" tl to denote the Euclidean vector norm or its induced matrix norm.

We base our augmented Lagrangian pattern search method on Algorithm 1 of [6]. The original algorithm

follows.

Step 0 [Initialization]. An initial vector of Lagrange multiplier estimates A(0) is given. The positive

constants rlo,#o,wo, r < 1,_?l < 1,w. << 1,rl. << 1,a_,fl,_,an, and/3_ are specified. The diagonal matrices

$1 and $2, for which 0 < S_ -1 < $2 < c_, are given (the inequalities are to be understood element-wise for

the diagonal elements). Set/rio) = #0, a (°) = min(# (°), V1), w (°) = w0(a(°)) _, r/(°) = rl0(a(°)) _', and k = 0.

Step 1 [Inner iteration]. Define a scaling matrix S (k) for which S_ -1 < S (k) < $2. Find x (k) • B

such that

II P(x(k), V_ _5(k)) II -< w(k).(2.3)

If

execute Step 2. Otherwise, execute Step 3.

Step 2 [Test for convergence and update Lagrange multiplier estimates]. If II P(x(k), Vx ¢(k)) II -<

w* and iI c(x(k)) II <- 77-, stop. Otherwise, set

(k+ 1) = X(x(k), _(k), S(k), _(k))

f_(k-.I-1) = p(k)

a (_+1) = min(# (k+U, 71)

w(k+ l) = w(k) (a(k+l))_

,7(k+i)= _/(k) (a(k+l))_,,

increment k by one and go to Step 1.

=! | I



Step 3 [Reduce the penalty parameter]. Set

A(k+l) = A(k)

#(k+l) = r#(k)

O_(k+l) : min(# (k+l), "fl)

increment k by one and go to Step 1.

w(k+l) = w0(a(k+l))_-

_/(k+l) = r]0 (a(k+l))a,,

3. Bound constrained pattern search algorithms. We next review the relcvant features of the

general pattcrn search method for the bound constrained problem

(3.1) minimize f(x)
subject to g<x<u.

As noted in [19], a number of "classical" pattern search algorithms are suitable for bound constrained

minimization, including

• coordinate search with fixed step lengths [26],

• evolutionary operation using composite designs ([2] and [4, 31]),

• the original pattern search method of Hooke and Jeeves [15], and

• the multidirectional search algorithm ([33, 34] and [9])

For a further discussion, see [19, 21].

3.1. The pattern. Thc indcx j will denote the iteration in a pattern search method. A pattern P(J)

is a matrix P(J) E Z n×p' , where pj > n + 1. There is no upper bound on pj. We partition the pattern into

components

P(J) = [ P(J) L(J) ].

We require that I_(j) E Z nxr_ belong to a finite set of matrices r and that L (j) E Z n×(rj-rj) contains at

least one column, a column of zcrocs. The inclusion of a column of zeroes is simply a formalism to allow for

a zero step, i.e., x (j+l) = x (j).

The matrices F(J) must satisfy certain conditions, discussed more fully in [19, 21], that ensure that near

the boundary of the bound constrained feasible region we always have a set of generators for any possible

tangent cone. This, in turn, means that we can capture any feasible improvement in the objective.

For the purposes of this discussion, thc reader may assume that F (j) = [I - I], or, more generally,

FO) = [D(J) _ DO)f,(a.2)

where

(a.a) D (j) = diag(d_J)), i = 1,...,n.

This was the prescription for the pattern given in [19]. In [21] this condition is relaxed so that a bound con-

strained pattern search algorithm can behave like a pattern search algorithm for unconstrained minimization

in the interior of the feasible region or in a subspace of unbounded variables.

At iteration j, given A(J) E //_ with A0) > 0, we define a trial step to be a vector of the form

s(J) A(J)c_ j) for some i E {1,.-.,pj}, where c_j) denotes the ith column of p0) (i.e., P(J) = [c? ) --c_)]).

We call a trial step _i_(j) feasible for (3.1) if (x (j) + _i ] E B = { x [ g -< x _< u }. At iteration j, a trial

point is any point of the form x_ j) = xU) + s_ j), where xU) is the current iterate.



3.2. The bound constrained exploratory moves. Pattern search methods proceed by conducting

a series of exploratory moves about the current iterate x (j) to choose a new iterate x (j+l) = x (j) + s(J), for

some feasible step s(J) determined during the coursc of the exploratory moves. Thc following hypotheses

on the result of the bound constrained exploratory moves allow a broad choice of exploratory moves while

ensuring the properties required to prove convergence. By abuse of notation, if A is a matrix, y C A means

that the vector y is a column of A.

1. s (j) E A(J)P (j) -- A(J) [F (j) L(J)].

2. (x(¢) + s(¢)) e B = { x I l<x<u}.

3. If rain { f(x(J) + y) I Y 6 A(J)F (j), z (j) + y 6 B } < f(x(J)),

then f(x(J) + s(J)) < f(x(J)).

FIG. 3.1. Hypotheses on the result of the bound constrained exploratory moves.

3.3. The bound constrained pattern search method. Fig. 3.2 states the generalized pattern search

method for minimization with bound constraints. To define a particular pattern search method, we must

specify the pattern P(J), the bound constrained exploratory moves to be used to produce a feasible step s(J),

and thc algorithms for updating P(J) and A(J).

Let x (°)

For j =

a)
b)
e)
d)

E B and A(°) > 0 be given.

0,1,---,

Compute y(x(J)).

Determine a step s (j) using a bound constrained exploratory moves algorithm.

If f(x (j) + s(J)) < f(x(J)), then x (j+l) = x(j) + s(2. Otherwise x (j+_) -= x (j).

Update P(J) and A(J).

Fro. 3.2. The Generalized Pattern Search Method for Bound Constrained Problems.

3.4. The updates. The aim of the update of A(J) is to force a strict reduction in f. An iteration with

f(x (j) q- s (j)) < f(x (j)) is successful; otherwise, the iteration is unsuccessful. Note that to accept a step we

only require simple, as opposed to sufficient, decrease. We cannot increase or decrease A(J) in an arbitrary

manner (as is detailed more fully in [19, 21]), but for the purposes of analyzing the augmented Lagrangian

pattern search algorithm, the update of A(J) can be summarized as

(3.4)

(3.5)

If f(x(J) + s (j)) < f(x (j)) then A(J+I) > A(J).

If f(x (j) + s(j)) >_ f(x(J)) then A(J+_) < A(J).

If an iteration is successful it may be possible to increase the step length parameter A(J), but A(J) is

not allowed to decrease. Whereas if an iteration is unsuccessful, the step length parameter A(J) must be

decreased. Again, we refer the reader to [19, 21] for the details.

4. The pattern search augmented Lagrangian method. At iteration k of the original augmented

Lagrangian algorithm described in §2, wc approximately solve the subproblem

minimize (I)(k) (z)

(4.1) subject to g < x < u.

_1 |1



The degree to which this subproblem must be solved is given by (2.3). We adapt Algorithm 1 in [6] to

pattern search by solving thc bound constrained subproblem using a bound constrained pattern search

method. However, pattern search methods do not have recourse to derivatives or explicit approximations

thereof. For that reason we must replace the stopping criterion (2.3) with one that is appropriate to a pattern

search method.

We replace (2.3) with a new criterion on the size of the pattern. As we discuss in §5, we retain the con-

vergence properties of the original Conn, Gould and Toint algorithm because the size of the pattern and the

stationarity condition (2.3) are correlated, even though we do not have explicit control of I]P(x(k) , V_ ¢(k)) II.

We now state the augmented Lagrangian pattern search algorithm. At iteration k in the outermost loop

of the algorithm, wc will denote by {x (k'D } thc sequence of iterates produced in the solution of (4.1) via

(k,j) d*a bound constrained pattern search algorithm. We also assume that there exists d* such that Idi I -<

for all k, where the d_k'j) are the diagonal entries in (3.3). This uniformity in the pattern search algorithms

used in the successive minimization of the augmented Lagrangian is not at all restrictive. An obvious way in

which to accomplish this is simply to choose for all k the same set F in the definition of the pattern search

algorithms (see §3.1).

In order to relate the stopping criterion in the pattern search solution of the subproblcms to the multiplier

estimates and the penalty parameter, we introduce the function

0(._, p) = (1 + I1_ 11+ 1/#) -_.

We note that any function 0(A, #) such that

O(A,_) -- 0((11 ,_ 11+ 1/_)-')

as (][ A [I+ 1/p) ---*oc will suffice for the purposes of proving convergence.

Step 0 [Initialization]. An initial vector of Lagrange multiplier estimates A(°) is given. The positive

constants r/o,#o,wo,_- < 1,71 < 1,_. << 1,_. <_ 1,a_,_,_,an, and j3n are specified. The diagonal matrices

$1 and $2, for which 0 < S_ -1 _< $2 < oo, are given (the inequalities are to be understood element-wise

for the diagonal elements). Set #(o) = #o, a (°) = min(/fl°), 71), w (°) ----wo(a(o))_, _i(°) = 0(A(°),/_(°))w(°),

r/(°) = _o(a(°)) _,, and k = 0.

Step 1 [Inner iteration]. Define a scaling matrix S (k) for which S11 _< S (k) _< $2. Apply the bound

constrained pattern search method to

(4.2) minimize ¢(k) (x)
subject to _<x<u

to find x (k) = x (k'j) E B such that the pattern is sufficiently small,

(4.3) A (kd) _< ¢f(k),

and we do not find an acceptable step in the part of the pattern p(k,j) corresponding to F (k'j),

(4.4) f(x (k,j) + s (k,j)) _ f(x (k,j)) for all s (k'j) E A(k'J)[ '(k'j),

The latter is the case, for instance, in the event of an unsuccessful step.

If

II (k)) II < ,7(k),

execute Step 2. Otherwise, execute Step 3.



Step 2

II c(x(k)) lJ < 71., stop. Otherwise, set

A(k+l)

/_(k+l)

a(k+l)

oj(k+ 1)

5(k+1)

_(k+_)

increment k by one and go to Step 1.

[Test for convergence and update Lagrange multiplier estimates]. If 6 (k) < 6* and

= X(x(k), A(k), s(k), #(k))

_ #(k)

----min(p (k+l) , 3'1)

= w(k) (_(k+l))z_

= O(A(k+l),_t(k+l) ) 02(k+l)

= _(k) (a(k+_))_,,

Step 3 [Reduce the penalty parameter]. Set

_(k+l) ---- _(k)

p(k+l) = T#(k)

_(k+l) = min(#(k+l), 3_1)

w(k+l) = _O(a(k+l))aw

6(k+ 1) -_ 0(/_(k+l), _A(k+l) ) 02 (k+l)

_(k+l) = _o(Ot(k+l))an,

increment k by one and go to Step 1.

Notc that we have replaced the stopping criterion (2.3) for the inner iteration of Algorithm 1 in [6] with

(4.3)-(4.4), which are stopping criteria based on the size of the pattern, because we do not assume explicit

information about the derivatives. The remaining modifications to Algorithm I in [6] are to correctly manage

the sequence {6 (k) }, which controls the stopping criteria we have introduced. The question now remains:

having removed an exact specification of how inexact the solution of the subprob]em can be (i.e., (2.3)), are

the weaker conditions we have introduced (i.e., (4.3) (4.4)) sufficicnt to guarantee that (2.3) will be satisfied

asymptotically? An answer in the affirmative is provided in the next section.

5. Convergence analysis. We now discuss the convergence properties of the augmented Lagrangian

pattern search algorithm. As we shall see, altering the original algorithm by solving the bound constrained

subproblem via pattern search does leaves the convergence properties of the original algorithm almost entirely

unchanged.

In [6], Conn, Gould, and Toint call a component of x (k) floating if

e_ < z_k) - (V_¢(k))i < ui.

For a convergent subsequence {x(k)}, k E K, with limit point x* they define the index set

/i _ { i ] x_ k) are floating for all k • g sufficiently large and gi < x; < ui },

and let A(x) denote the corresponding columns of the Jacobian of c(x), where A(x) is the entire Jacobian

of c(x).

The following assumptions are made in [6].

AS1. The functions f(x) and c(x) are twice continuously differentiable for all x • B.

I |1_



AS2. The iterates {x (k) } considered lie within a closed, bounded domain ft.

AS3. The matrix .4(x*) has column rank no smaller than m at any limit point x* of the sequences

{x (k) } considered in this paper.

In addition, in order to be assured that a bound constrained pattern search algorithm applied to the

subproblem (4.2) will find an iterate satisfying (4.3) (4.4), we assume the following.

PS1. For a given k, the set B f3 { x t q?(k)(x) < rig(k)(x(k'°)) } /s compact.

That is, we assume compactness of the set of x E B for which the augmented Lagrangian is less than the

value of the augmented Lagrangian at the point at which we begin thc solution of the subproblem. This

is not a particularly restrictive assumption, as we discuss further in the context of inequality constrained

minimization in §6, but it is nccessary to ensure convergence of any pattern search method applied to the

subproblem (4.2).

Under hypothesis (PS1), we are assurcd that in the inner iteration (thc pattern search minimization of

the bound constrained augmented Lagrangian),

lim inf A (kd) = 0

(see [19, 21]), so the termination criterion (4.3) eventually will be satisfied. Moreover, the update rules

(3.4) (3.5) only allow A (kd) to be decreased at unsuccessful steps, where (4.4) holds. Thus both termination

criteria (4.3) and (4.4) will eventually be satisfied, the pattern search solution of the augmented Lagrangian

subproblem will halt, and the overall iteration of the pattern search augmented Lagrangian algorithm is

well-defined.

5.1. The relationship between the pattern size and stationarity. For convenience, let

q(k,j) = p(x(k,j), _Txe_(k) (x(k,j)) ).

The following result is the key to analyzing the augmented Lagrangian pattern search method.

PROPOSITION 5.1. There exists C5.1, independent of k, such that

H P(x(k), V_ (I)(k)) II< c51

for all k.

Proof. Given k, x (k) -- x (kd) for some j. By design we have d* > 0 such that Id_kd) ] < d* for all i, j,

and k, where d_kd) is as defined in (3.2).

First suppose

(5.1) > tlq(k,j)
-- d*

Then (5.1), (4.3), and the rule for updating (f(k) in either Step 2 or Step 3 give us

and so

(5.2)

On the other hand, suppose

IIq(kd) 11_, < d.A(kd) g d*5(k) <_ d*w(k)

Jl q(kd) Jl _ n½d*w(k).

IIq(k,j)
A(kd) <

d*



The proof of Proposition 5.2 in [19] shows that if A (kd) < ][ q(kd) [[_/d*, then there is a trial step s_k'j) E

A(k'J)F (k'j) such that x (kS) + s_k'j) E B and

_(kd)
(5.3) V_¢(k)(x(k'j))T s} kd) < --n-½ I]q(k,j) I[li _i H"

The stopping criterion (4.4) means that

(5.4) o _<_(k)(x(k) + s}_,n) _ _(_)(xCk)).

At the same time we have

(5.5) ¢(k)(xCk)+ s_k,j))_ ¢(_)(_(k)) = V_¢(k)(_)r,}_,j)

, _(k,j) _ x(k) x(k) s_kd).for some _ in the line segment (x (k) x (k) + _i ) connecting and + Thus from (5.4), (5.5),

and (5.3) we obtain

o _<_(k)(x(k)+ _k,_)) _ ¢(k)(_(k))

= V_¢(k)(_(k))%_k,j)+ (V_(_)(_) _ V_¢Ck)(_Ck)))rs_k,j)

_(k,j)II,-<-'_-½ IIqCk,j)fill _}k,_)II+ IIv_(I)Ck)(5)-v_c)ck)(_ (k)) Itll_

which yields

(5.6)

SO

(5.7)

Now,

Itq(kj)II _<n½11v_(k)(¢)- v_¢ck)(_ (k)) II.

Applying the mean-value theorem again, for some ( E (x (k) , _) we have

v_¢ck)(_) _ v_¢(k)(_(k)) = v_¢(k)(¢)(_ _ _(k)),

IIv_¢(k)(¢) - v_¢(k)(_ (k)) II -_ IIvL¢(k)(0 III1¢ - x(k) tl
_(k,j)-<tl v_¢(k)(O III1_, II.

m m

V2 (I)(k)(() 2 E A_k)V2c' (¢) 1= Vxxf(() + + -#-_ (vc(_)'qVc(¢)T + E suct(_)V2ct(())"
1=1 1=1

By construction, w(k) -+ 0, so a(k) _+ 0, so by (AS2), ( lies in a compact subset that is independent of k.

Furthermore, the bound S (_) _< S= is independent of k. Thus we can find M, independent of k, such that

1

tl vL¢(_)(¢) II<-M + Mll _(_) ii + M#ck----y.

Returning to (5.7) we have

( 1 ) _(_,,)(5.8) II Vz(I)(k)(_) - V_(I)(k)(x(k)) II --<M 1 + II A(k) It + p--_ II _i t1"

_(k,j) A(kd)F (kd), and (4.3) we haveThus from (5.6), (5.8), the fact that _i

IIqc_,nII _ _½Itv_c_)(_) _ v_¢(_)(_c_))II

( 1 ) _(k,j)<n½M 1+11 A(k) I1+_ II_i II

< n½d*M (I + II ACk) II+ -I(E) A (_'j)

< n½d'M (i + ll ,XCk) ll + -l(E) , (_).

10
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Finally, the rule for updating 5 (k) in either Step 2 or Step 3 gives us

(5.9) II q(k,j) I] <- n½d*Mw(k).

Combining (5.2) and (5.9) yields the proposition. [2

5.2. Convergence results. Proposition 5.1 means that the asymptotic behavior of I[ P(x(k), Vx ¢(k)) II

in the augmented Lagrangian pattern search algorithm is like that of the same quantity in the original algo-

rithm. This, in turn, allows us to piggy-back the convergence analysis for the augmented Lagrangian pattern

search algorithm on that for the original augmented Lagrangian algorithm in [6]. Because of Proposition 5.1

the original proofs of all these results still hold.

The first convergence result corresponds to Theorem 4.4 and Lemma 4.3 in [6]. Let

gL(x;_) = V:(x) + _ _V_(x),
i=l

which is the gradient of the Lagrangian with respect to the constraints ci ix) only.

THEOREM 5.2. Assume that (AS1) holds. Let x* be any limit point of the sequence {x (k)} generated by

the augmented Lagrangian pattern search algorithm for which (AS2) and (AS3) hold and let K be the set of

indices of an infinite subsequence of the x (k) whose limit is x*. Then

(i) c(x*) = o.
(ii) x* is a Karush-Kuhn-Tucker point (first-order stationary point) for the problem (1.1),)¢ is the

corresponding vector of Lagrange multipliers, and the sequence {_(x (k),)_(k), S(k),p(k))} converges to J_* for

kEK.

(iii) There are positive constants al, a2, sl and an integer ko such that

IIX(x(k),'_(k), S(k),_ (k)) -- ,X* II< a_w(k) + a211x (k) - x* II

and

tlc(x(k)) II_ sl(alaj(k)_ t(k) -I-_¢k)ll _<k)_ ),. II+ _(k)ll _(k) _ _. II)

for all k >_ ko, (k C K).

(iv) The gradients Vx(I )(k) converge to gL(x*; _*) for k E K.

As in [6], under additional assumptions we obtain stronger results. Following [6], if J1 and J2 are any

index sets, and HL(X*, 1_*) is the Hessian of the Lagrangian, then HL(x*, )_*)[J1,J2] is the matrix formed by

taking the rows and columns of HL(X*, ),*) indexed by J1 and J2, respectively, while A(x*)igl] is the matrix

formed by taking the columns of A(x*) indexed by 3"1. We then make the following assumptions.

AS4. The second derivatives of the functions f(x) and the ci(x) are Lipsehitz continuous at all points

Suppose that (x*,)¢) is a Karush-Kuhn-Tucker point for the problem (1.1) and that

Jl={ i I

J_={i l

Then we assume that the matrix

(gL(X*; ,_*))i = 0 and gi < x* < ui }

(gL(X*;_*))i = 0 and (x* = gi or x* ----=ui) }.

[ HL(x*,_*)[j,j] (A(x*)[j]) T ]A(x*)[j] 0

II



is nonsinguIar for all sets J, where J is any set made up from the union of J1 and any subset of J2.

The next result from [6], which also holds for the augmented Lagrangian pattern search algorithm, is

Lemma 5.1. This result relates the convergence of the iterates to the error in the multipliers, a relationship

characteristic of augmented Lagrangian methods [1, 32]. Again, the proof in [6] holds for the pattern search

variant because of Proposition 5.1.

LEMMA 5.3. Suppose that (AS1) holds. Let {x (k) } C B, k E K, be a subsequence which converges to

the Karush-Kuhn-Tucker point x* for which (AS2), (AS4), and (AS5) hold, and let _* be the corresponding

vector of Lagrange multipliers. Assume that {A(k)}, k G K, is any sequence of vectors, that {S(k)}, k E K,

is any sequence of diagonal matrices satisfying 0 < S_ 1 < S (k) < $2 < c¢, and that {#(k)}, k E K, form

a nonincreasing sequence of positive scalars, so that the product #(/¢)Ii A(k) -- A* I1 converges to zero as k

increases. Now, suppose further that

IIP( x(k_,v. (I'(k_)Ir<--_(k),

where the w (k) are positive scalar parameters which converge to zero as k E K increases. Then there are

positive constants -fi, a3, a4, as, a6, and sl and an integer value ko so that if# (k°) < -fi then

(5.10) [I x(k) -- X* [1 _ a3°-_(k) _- a4_ A(k)[[ _(k) _ ,_, H

IIX(x<k),_(k)S(k)_<k)) _ _. tl_ a5_ok)+ ao_(k)II_(k) _ _, II

and

(5.11) I[ C(x(k)) I[ _-_ 81(a5¢d(k)] A(k) -_- (_(k) ._ a6(_(k))2)t I )_(k) _ )_. 1[)

for all k > ko, (k E K).

The following is Corollary 5.2 in [6].

COROLLARY 5.4. Suppose that the conditions of Lemma 5.3 hold and that _(k+l) is any Lagrange

multiplier estimate for which

II£(k+_)_ _,.II-<a,611x(k)- =*II+ a,_(k)

for some positive constants a16 and a17 and all k E K sufficiently large. Then there are positive constants

-fi, a3, aa, as, a6, sl and an integer value ko so that if p (k°) < -_ then (5.10),

I1._(k+_)_ .x* tl -<a5o-'(k)+ a_ (k)II.x(k)- ,x* II,

and (5.11) hold for all k > ko, (k E K).

We also inherit the following result indicating that we may generally expect the penalty parameter to

remain bounded away from zero. This is Theorem 5.3 in [6]. Taken together with the convergence of the

multiplier estimates, this means that the stopping tolerance for the inexact minimization of the augmented

Lagrangian is decreasing at the same rate as in the original algorithm. However, in §6 of [6] the authors

show that in the case of non-unique limit points one can have p(k) _ 0, in which case the stopping tolerance

6k decreases more like (#(k))2.

THEOREM 5.5. Suppose that the iterates {x (k) } of the augmented Lagrangian pattern search algorithm

converge to the single limit point x*, that (AS1), (AS2), (AS4), and (AS5) hold, and that a n and Bn satisfy

an < min(1,a_) and _u < min(1, ft,_). Then there is a constant # > 0 such that Ifl k) >/z for all k.

12
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The proof of Theorem 5.5 makes use of the fact that II P(x(k), V* ¢(k)) II = O(wk), whereas the proofs

of the preceding convergence results require only that

I[ P(x(k), V* ¢(k)) I[ ---*0.

Finally, we have the following result on the rate of convergence of the outer iteration, corresponding to

Theorem 5.5 in [6].

THEOREM 5.6. Under the assumptions of Theorem 5.5, the iterates x (k) and the Lagrange multiplier

estimates _(k) of the augmented Lagrangian pattern search algorithm are at least R-linearly convergent with

R-factor at most/_min(_,_,), where ft -----min[71, #] and where # is the smallest value of the penalty parameter

generated by the algorithm in question.

6. Application to inequality constrained minimization. Special consideration is due to the gen-

eral problem

minimize f (y)

(6.1) subject to g(y) < 0

t<y<_u,

converted into the form (1.1) via the introduction of non-negative slack variables:

(6.2)

minimize f (y)

subject to g(y)+z=O

t<_y<u

z>_O.

The augmented Lagrangian associated with (6.2) is

(6.4)

where

m

1 + z,)2
(6.3) z; s, #) = f(y) +  T(g(y) + z) + ,:1

Explicit equality constraints may also be present in (6.1); wc ignore them here for brevity.

The introduction of slacks increases the dimension of the bound constrained subproblem that we must

solve at each outer iteration. Such increases in dimension usually cause a degradation in performance for

pattern search methods. However, we can avoid this increase in dimension because of the simple way in

which the slacks z enter into (6.3). A standard approach [1, 27] is to note that given y, we can minimize

¢(y, z; _, S, #) explicitly in z for z > 0. Doing so leads to a subproblcm problem in y alone:

minimize _(y, z(y); A, S, #)

subject to g _< y < u,

# _ l__(max(0 ' A, + Si_g,(y))2 _ A_).

m

• (y,z(y);A,S,p)-f(y)+_ "= s,_ #

The multiplier update formula (2.2) is also modified:

A,(x, ),, S, #) = max(0, hi + s,ica(x)/#), i = 1,..., m.

See [1] for further discussion. The reduced augmented Lagrangian _(y, z(y); A, S, #) has Lipschitz first

derivatives. Moreover, if the feasible region for the original problem (6.1) is compact (e.g., if there arc upper

and lower bounds on all the components of y), then the fcasible region for (6.4) is also compact, so we may

be assured of convergence of a bound constrained pattern search algorithm applied to (6.4).

13
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